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Abstract
We describe the modifications undergone by phase transitions associated with
a planar surface when the system is confined by the presence of a second
surface parallel to the first. The inhomogeneous states are studied within
the Landau density functional theory, which imparts scaling properties to the
order parameter profiles. We distinguish between two situations, identical and
symmetrically opposed surface fields, and provide three illustrations: (i) a
liquid crystal at the nematic–isotropic transition, (ii) a racemic mixture of
enantiomeric species and (iii) a ternary molecular fluid mixture close to a
consolute point.

1. Introduction

The study of phase transitions in films confined between parallel plates or walls has a long
history [1] and to the present day there has been a continuing interest both theoretically and
experimentally in this rich subject [2]. Most descriptions of the phase behaviour of films
have been made in comparison with bulk phase properties, since conceptually bulk transitions
are anticipated to be gradually modified in a film, phase boundaries and critical points being
shifted, as its finite thickness L is made progressively smaller. The prototypical example of
this continuous change is ‘capillary condensation’, descriptions of which date back to Lord
Kelvin [3], that is, when capillary walls interact strongly with the fluid molecules, condensation
of a gas into a liquid takes place at a pressure pL smaller than the bulk phase coexistence
pressure p∞. In agreement with finite size scaling arguments there is a convergence of the
coexistence curve and its associated critical point T (L)c to the bulk coexistence curve with
critical temperature T (∞)

c , of the form T (L)c − T (∞)
c ∼ L−1/ν when L → ∞, where ν is

the bulk correlation length exponent [4]. Of course, other factors intervene in changing bulk
phase properties such as the interactions with the walls and the effective couplings near them.
Accordingly, the combined effects of these with the finite film thickness have been incorporated
in finite-size scaling theories of confined systems [1, 5].
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Parallel to this, the single effect of surface fields and coupling enhancements on phase
behaviour, as described by the surface transitions and critical phenomena occurring in one-
wall semi-infinite systems, has been similarly developed [6, 7]. A global phase diagram for
the wetting, prewetting, pure surface and other transitions is known in detail from analysis
based on the Landau phenomenological theory [8], and has been generally substantiated via
numerical simulation studies [9]. For a simple system in magnetic language, the relevant
thermodynamic field variables are: t the temperature difference to T (∞)

c , h the bulk field, h1

the surface field, and g the enhancement of interactions at the surface. When h and h1 vanish
the so-called ordinary, special and extraordinary transitions take place at t = 0 when g < 0,
g = 0 and g > 0 respectively. The pure surface transition also occurs when h = h1 = 0 but at
t > 0. The lines of wetting transitions (t < 0, h = 0) as well as the line of prewetting critical
points (h �= 0) require that the wall favours one phase, i.e. a non-vanishing surface field h1.
For g > 0 the pure surface transition appears as a particular point on the line of prewetting
transitions (see [8, 10] for the original analysis).

Various aspects of the modification of the surface phase diagram for thin films have been
known since its inception [1,11], but here we find it of interest to present some seldom discussed
effects of finite size on surface transitions for two reasons. First, because this provides the
opportunity to describe film phase behaviour in comparison with the properties of the one-wall
semi-infinite problem as opposed to those of the bulk system. And secondly, because the phase
properties obtained from the Landau theory apply not only to simple magnets and fluids but
also to a variety of different systems, such as liquid crystals and complex fluid mixtures.

We have two distinct film configurations for a system with two-phase bulk coexistence:
(1) identical or alike walls, when the interaction between the film medium and the walls favours
the same phase. And, (2) opposing walls, when one wall favours one phase but the other the
second phase. In the first case one observes ‘capillary condensation’ as described above. In
the second case a more surprising effect takes place [12–17], for any wall separation L phase
coexistence occurs only at temperatures T < T (L)c located below and near the wetting transition
temperature Tw of the semi-infinite one-wall system. There is now a convergence of T (L)c to
Tw as L → ∞ [4, 12–17], and, remarkably, a single phase with long-range correlations in the
directions parallel to the walls is found for the entire range T (L)c < T < T (∞)

c , with T (L)c < Tw.
Since Tw is generally located far away from the bulk T (∞)

c the consequences of confinement are
conspicuous. The appearance of the single-phase states at T (L)c can be identified as a shifted
wetting transition [14], and this can be either continuous or of first order [14]. Thus, according
to the choice of type of wall field, the phase behaviour of the film resembles either that of the
bulk or that of the one-wall semi-infinite system, and this indicates the underlying connection
between the properties of the confined system and those of the related infinite-size systems.
So, the wetting phenomena associated with the one-wall system are clearly discernible in the
behaviour of systems confined by opposing walls, but not so clearly in those confined by similar
or identical walls.

In the following section we briefly recall the Landau density functional theory for one-
dimensional inhomogeneities [18] together with some of the main features of the global phase
diagram predicted by this theory for a one-wall semi-infinite system. In subsequent sections
we describe modifications of the surface phase diagram when the system becomes confined
and acquires slab geometry. In section 3 we consider the effect of finite size on the wetting
transition. We illustrate this issue for a model liquid crystal confined by walls that compete
in molecular alignment and examine the consequences for the bulk isotropic–nematic (IN)
transition. We employ Landau–de Gennes free energy with symmetrically opposing wall fields
that favour random parallel and homeotropic orientations, respectively, at each wall [19]. In
section 4 we consider the finite size effect on the pure surface transition and on its associated
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surface states. We analyse this question for a model symmetric fluid mixture confined by
parallel planar walls and describe the concentration profiles and phase properties for cases of
identical and symmetrically opposed fields at the walls. We focus on the occurrence of phase
separation otherwise absent in bulk mixtures and find that this can take place when chemical
potentials and molecular interactions are modified at the surfaces [23]. The phenomenon
may find application in the resolution of racemic mixtures of enantiomers. In section 5
we consider the finite size effects on interfacial states close to the special transition. We
describe this problem in terms of a model ternary mixture of bifunctional molecules [24] near
a consolute point. The mixture model originally defined on a lattice has been used to represent
some aspects of water–oil–amphiphile solutions [25, 26]. Bearing in mind the properties of
bifunctional molecules, the confining walls can be modelled via a permanent molecular coat
of these molecules, with the result that the surface fields and interaction enhancements can be
simply adjusted via the coat composition. As an example, we describe a family of interfacial-
like film concentration profiles. Section 6 contains some remarks on the scaling properties of
the order parameter profiles obtained from the Landau theory.

2. Phase transitions in a slab geometry

Consider the Landau free energy functional with magnetization m(z) and external field h

F [m] =
∫ z2

z1

[
fb(m)− hm +

A

2

(
dm

dx

)2
]

dz +�1(z1) +�2(z2) (1)

with

fb(m) = atm2 + bm4 (2)

where a and b are constants and t ≡ (T − Tc)/Tc is the temperature distance to the critical
temperature Tc. In equation (1) A is taken to be a constant and �1,2 are surface terms of the
form

�1,2 = − 1
2g1,2m

2
1,2 − h1,2m1,2 (3)

where m1,2 = m(z1,2), g1,2 are the surface coupling enhancement parameters and h1,2 are the
surface fields. For a d-dimensional system F is a free energy density in (d − 1)-dimensional
space.

The stationary solutions δF = 0 of equation (1) are obtained from

m′ ≡ dm

dz
= ±

√
2

A
(fb − hm + CL) (4)

together with the boundary conditions

± dm

dz

∣∣∣∣
z1,2

= −g1,2m1,2 − h1,2. (5)

In equation (4) the prime indicates a derivative with respect to m and CL is a constant of
integration determined by the wall separation L ≡ z2 − z1, the plus and minus sign in
equation (5) corresponds to the surfaces at z1 and z2 respectively. The thermodynamic stability
of the profiles m(z) obtained from the above equations can be determined by considering that
the second variation of the free energy functional evaluated at m(z) be positive. The types of
solution that the theory predicts can be examined through the phase portraits (m,m′) obtained
from equation (4) for different values of t and h together with the straight-line boundary
conditions given by equation (5) for different values of g1,2 and h1,2. Representative phase
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Figure 1. Phase portrait for t > 0 and h = 0. The full curve is the separatrix C∞ = 0, the dashed
curves are CL > 0 orbits, and the dotted curves are CL < 0 orbits. The straight lines represent the
wall boundary conditions.

portraits are shown in figures 1–3, the conditions in figure 1 correspond to t > 0 and h = 0,
those in figure 2 correspond to the bulk phase coexistence at t < 0 and h = 0, while those in
figure 3 are for the same temperature t < 0 but h �= 0, when one bulk phase is metastable. Each
trajectory or orbit in these figures is obtained by assigning a value to CL in equation (4). The
possible order parameter profiles m(z) for given wall fields and separations are obtained by
selecting intersections of the lines with an orbit CL that reproduces the given L. Substitution
of equation (4) into (1) gives the following expression for the equilibrium (or more generally,
stationary) free energy

Feq =
∫ mL

m0

m′ dm− CLL− 1
2gLm

2
L − hLmL − 1

2g0m
2
0 − h0m0 (6)

and differentiation of this, taking into account equation (5), gives

CL = −∂Feq
∂L

so that CL can be associated with the force between the walls, the thermodynamic variable
conjugate to L. Reference [18] provides a more detailed description of how this free energy
density formalism is applied to different problems in infinite, semi-infinite and finite systems
involving inhomogeneous situations, ranging from nucleation and spinodal decomposition, to
wetting and surface phase transitions, and to phase diagram shifts as produced by confinement
by two parallel walls.

The surface phase transitions occurring in one-wall semi-infinite systems can be seen
in figures 1 to 3. The pure surface transition occurs when t > 0, h = 0, h1 = 0 and
g =

√
2A−1at > 0, the relevant phase portrait orbit is the separatrix C∞ = 0 in figure 1

which has a cusp at the bulk state m = m′ = 0 at the origin. The wall boundary condition
is a straight line with slope g that also passes through the origin m = m′ = 0. This is the
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Figure 2. Phase portrait for t < 0 and h = 0. The full curve is the separatrix C∞, the dashed
curves are CL > 0 orbits, and the dotted curves are CL < 0 orbits. The straight line represent a
wall boundary condition and the intersections A and B determine non-wetting and the complete
wetting states when the bulk state is −m0.

only intersection of line and orbit when g is small and m(z) = 0 for all z. When g is large an
additional pair of intersections appears (one withm > 0 andm′ > 0 and the other withm < 0
and m′ < 0) and now m(z) differs from zero close to the surface, there are two coexisting
states m(z) and −m(z). The pure surface transition takes place when the orbit and the line
become tangential atm = 0, where ∂m′/∂m =

√
2A−1at . The wetting transition occurs when

t < 0, h = 0, h1 �= 0, when g � 0 it is a first-order transition but when g < 0 it is of second
order for small values of |h1| and becomes of first order for larger |h1| at a tricritical point.
In figure 2 two segments of the separatrix orbit containing the bulk state ±m0 correspond to
the non-wetting and the complete wetting states, they are those between the bulk state −m0

and the wall intersections at A and B respectively. The wetting transition between these two
states can be located by adjusting the values of t or h1. The prewetting transition occurs when
h �= 0, extends (only) out of a first-order wetting transition and terminates at a prewetting
critical point. In figure 3 two segments of the separatrix orbit containing the bulk state −m0

correspond to non-wetting and prewetting film states, they are those between the bulk state
−m0 and the wall intersections at A and B respectively. For fixed h the prewetting transition
between these two states can be located by adjusting the values of t or h1. For g < 0 the
terminus of the wetting transitions at t = 0 is the ordinary transition, for g > 0 is it the
extraordinary transition, and for g = 0 it is the special transition. In this last case the critical
prewetting transitions also terminates at the special transition. See also [1,8] for details on the
critical exponents and scaling laws associated with these transitions. The profilesm(z) for the
two-wall confined system are obtained from orbits other than the separatrix.
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Figure 3. Phase portrait for t < 0 and h < 0. The full curve is the separatrix C∞, the dashed
curves are CL > 0 orbits, and the dotted lines are CL < 0 orbits. The dash-dotted orbit is another
separatrix containing a uniform metastable state. The straight lines represent the wall boundaries.
The straight line represents a wall boundary condition and the intersections A and B determine
non-wetting and the prewetting states when the bulk state is −m0.

3. Nematic liquid crystal

As an example of the effect of finite size on the wetting transition for thin films we refer to
results on the alteration that the bulk IN transition suffers when confinement takes place via
walls with competing surface fields [19]. We choose the surface field at one wall to favour
molecular orientations parallel to the plane of the wall, with no specific preference within that
plane (random parallel alignment), and that at the other wall to promote orientations normal to
the plane (homeotropic alignment). Under the simplifying assumption of a uniform director
orientation (normal to the walls) the Landau–de Gennes free energy [20] density functional
that describes the confined liquid crystal is given by equation (1) where the magnetization m
is replaced by the nematic alignment order parameter S, the magnetic field h is replaced by
the ordering field µ, and where the free energy fb is now given by

fb(S) = −µS + a(T − T ∗)S2 + bS3 + cS4. (7)

The external field strength µ is necessarily positive (since it is proportional to the square of
either an electric or magnetic field applied along the z-axis). We have obtained the order
parameter profiles for this arrangement with µL = −µ0 = µs and g = 0, and we have
determined the phase diagram as a function of temperature T , surface field strength µs and
wall separation L [19].

The solutions for this problem when T = TIN and µ = 0 are equivalent to those of a
magnetic slab described by a symmetric double-well Landau free energy when h = 0 with
opposing surface fields and vanishing coupling surface enhancement g. The corresponding
phase portrait is of the same type as that shown in figure 2, withm andm′ replaced by S and S ′

respectively, and the bulk −m0 and m0 replaced by 0 and S0 respectively. At this temperature
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the one-wall semi-infinite system with isotropic bulk exhibits a wetting transition at a wall
field strength µ0 = µws , at which a wetting film of the nematic phase appears at the wall. And
similarly, when the bulk state is the nematic phase a wetting transition occurs at a wall field
strength µ0 = −µws , when a wetting film of the isotropic phase develops at the wall. For the
confined system with µL = −µ0 = µs this transition appears shifted and occurs at a field
strength µqws (L).

The phase properties of the liquid crystal film with symmetrically opposing walls are
displayed differently when compared with the case of the magnet since the temperature in
the liquid crystal with µ = 0 takes the role of the external field of the magnet. This is a
consequence of the cubic term in fb(S) in equation (7) that makes T the adjusting parameter
for the difference in height of the minima of fb(S) and for their appearance or disappearance.
Thus, NI coexistence remains fixed at TIN under symmetrically opposing wall confinement
just as spontaneous magnetization m0 continues to takes place at vanishing h under similar
circumstances. The IN transition continues to be of first order as it is the counterpart of the
coexistence of oppositely magnetized states. Also, the phase behaviour observed in the nematic
phase with variation of T across TIN can be observed in the magnetic slab under the application
of an external field, as h passes through zero. The competing walls introduce interfacial-like
states that occupy large regions of the phase diagram where the isotropic and the nematic phase
would be otherwise found.

Our study [19] indicates that the occurrence of the IN transition (T (L)IN = TIN for all L) is
restricted to lie below a maximum wall separation Lqw(µs). The curve Lqw(µs) demarcates
the transformation of ‘bulk-like’ IN two-phase coexistence states into ‘interface-like’ one-
phase states. Lqw diverges when µs → µws . The transition is of first order (Lqw) when µs
is smaller than a special value µtcs and it is critical (L′′

qw) when µs is larger than µtcs ; the
two branches join at a tricritical point when µs equals µtcs . The IN coexistence states for
µs > µ∗

s undergo an additional continuous transition between low and high wall adsorption
states at a locus L′

qw(µs) that originates at Lqw(µ∗
s ) and extends towards smaller L and

larger µs . A similar phase diagram in the (L,µs)-plane is obtained when the temperature
is varied moderately both below and above TIN. When T < TIN the transition at the wall
separation Lqpw(µs) is between nematic- and interface-like states, whereas for T > TIN the
transition involves isotropic- and interface-like states. In both cases Lqpw diverges when
µs → µ

pw
s where µpws is the wall field strength for a prewetting transition of the semi-infinite

system at T .

4. Racemic mixture of enantiomers

As an example of the effect of finite size on the pure surface transition for thin films we
consider a fluid mixture of enantiomers, i.e. molecules that are non-superimposable mirror
images of each other. The pure species, termed ‘right-handed’ or ‘left-handed’, d or l,
have essentially identical physical properties except when acting in chiral environments and
macroscopic samples have the same phase behaviour. Generally, a mixture of the two species
lacks liquid–liquid immiscibility but in some cases there is segregation in the solid phase. A
mixture of equal amounts of the two species is called a racemic mixture [21].

To study phase behaviour of mixtures of enantiomers under confinement, we looked
recently [23] at the properties of an elemental van der Waals symmetric mixture model [22]
of equal-sized molecules with negative heat of mixing, i.e. unlike pair attractions are stronger
than like pair attractions. In correspondence with the behaviour of real enantiomeric mixtures
the model bulk phase diagram lacks liquid–liquid immiscibility and the racemic mixture is
an azeotrope [21]. We found that phase separation of the two compounds can be induced
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in the racemic mixture via confinement by means of suitable surface fields and interaction
enhancements. We studied the inhomogeneous states of the racemic mixture for the slab
geometry, with identical and symmetrically-opposed surface chemical potentials. The specific
strength of the surface chemical potentials and the selective enhancement of interactions at
the walls can be conceived to be the result of the preparation of the substrates by a uniform,
oriented coating of one of the enantiomeric species or by another suitable pure enantiomer.
Two different sets of identical substrates are realized with use of either the l or the d species,
whereas the symmetrically opposed walls are constructed by coating one wall with the l species
and the other with the d species.

The free energy of the model fluid mixture at constant density is equivalent to that of a
magnetic spin- 1

2 system with negative (antiferromagnetic) coupling [23]. Here again we can
employ the density functional and the results for one-dimensional inhomogeneities described
in section 2 [18]. In this equivalence the magnetization m measures the concentration of
species m = 1 − 2ρl(ρl + ρd)−1 where ρl and ρd are the number densities of the two species.
The field h measures the difference h = (µd − µl)/2 between the chemical potentials µl and
µd of the two species, whereas the coupling J relates to the difference J = (α−α′)(ρl +ρd)/2
between the strengths α and α′ of the attractive interactions for like and unlike molecular
pairs. Therefore liquid–liquid immiscibility for a racemic mixture corresponds to the onset
of spontaneous magnetization, and this is only possible for a ferromagnetic coupling J > 0.
(As it is customary, the term at in fb(m) in equation (2) is given by at = J − kT /2, with the
coordination number omitted.)

Our main results are [23]: first, there is local phase separation of the racemic mixture
(h = 0) in the neighbourhood of the substrates for the unconfined system (L → ∞) with
vanishing wall fields (h1,2 = 0) but in the presence of sufficiently large surface coupling
enhancement (g > 0). The equilibrium state is a degenerate four-phase state, i.e. four
concentration profiles (two symmetric and two antisymmetric) have the same minimum free
energy (see the four intersections of the straight lines with the separatrix in figure 1 that
indicate the boundary conditions for these states). This state is analogous to that obtained at
temperatures T > Tc below the so-called purely surface transition in semi-infinite systems
with ferromagnetic interactions [1]. Secondly, for the confined system (L < ∞) the four-
phase state splits into two different two-phase states, one is the coexistence of states with
profiles that show local excess concentration of the same enantiomer at both walls (symmetric
profiles obtained from orbits left and right of the separatrix), and the other is the coexistence
of states with profiles that show local excess concentration of a different species at each wall
(antisymmetric profiles obtained from orbits above and below the separatrix). The former is
the equilibrium state and the latter is metastable, and as L decreases the free energy difference
between the two types of coexisting states increases. Thirdly, when the wall fields are turned
on, one of these coexistence states splits into two one-phase states whereas the other remains
a two-phase state. For identical walls it is the symmetric two-phase state that splits and the
new equilibrium one-phase state is that rich in the enantiomer species favoured by the walls;
the enrichment takes place all across the slit although it is more pronounced at the walls.
For symmetrically opposing walls it is the antisymmetric two-phase state that splits, and of
these, it is the state which exhibits wall enrichment in the enantiomer species favoured by
the field at each wall that attains the lower free energy. For large L this is the equilibrium
state. The enrichment takes place only at the walls and the mixture remains racemic at the
middle of the slit. As the wall separation L decreases the free energy difference between this
state and the symmetric two-phase state decreases and at a given separation there is a first-
order transition below which the equilibrium configuration is that of the symmetric two-phase
state.
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The effect of confinement of the mixture model is a phase behaviour considerably more
complex than that displayed by the bulk mixture. The coexistence of confined states rich in
each of its components is the film extension of the coexisting surface states associated with
the pure surface transition in the one-wall semi-infinite system. We notice that a pure surface
transition of the ferromagnetic type can also take place at the surface of a system that is an
antiferromagnet in bulk.

5. Three-component fluid mixture

As a third example of film phase behaviour we consider a fluid mixture that exhibits liquid–
liquid immiscibility. A model ternary mixture of bifunctional molecules was designed long
ago [24] to describe solubilization of two otherwise immiscible fluids and to verify whether
consolute points (liquid–liquid criticality) have the same properties as ordinary liquid–gas
critical points. Subsequently the model and its generalizations were employed to describe
properties of solutions of amphiphiles [25,26]. The mixture consists of three species of linear
bifunctional molecules, each molecule having two ends that can be of two different types, A
or B. The molecules are denoted by AA , BB and AB, and are placed on the bonds of a
regular lattice. In all the mixture configurations all the lattice bonds are (singly) occupied and
the molecules are placed such that only ends of the same type meet at any lattice point. This
construction rule makes the model mixture equivalent to an Ising spin- 1

2 model with the spins
placed on the sites of the same lattice where the external field h and the spin coupling J are
given by

h = µBB − µAA (8)

and

J = 1
2 (µBB + µAA)− µAB (9)

where µAA, µBB and µAB are the chemical potentials of the three species (and where some
proportionality constants involving the lattice coordination number have been omitted). We
notice that both ferromagnetic (low concentration of species AB) and antiferromagnetic (high
concentration of AB) behaviour is displayed by the phase properties of the mixture.

We can study the inhomogeneous states of this mixture model in continuum space by
considering the Landau density functional in equations (1) and (2) and by relating the bulk field
h and the temperature difference t to the mixture chemical potentials via equations (8) and (9)
with at = J −kT /2. The relationship between the magnetizationm(z) and the densities of the
mixture ρAA(z), ρBB(z) and ρAB(z) is given bym(z) = ρBB(z)−ρAA(z). This simplest version
of the model that is equivalent to a spin- 1

2 system requires that ρAA(z)+ ρAB(z)+ ρBB(z) = 1.
The surface fields and enhancement parameters in equations (3) can be related similarly to
substrate chemical potentials acting on the mixture via

h1,2 = µ
(1,2)
BB − µ

(1,2)
AA (10)

and

J1,2 = 1
2

(
µ
(1,2)
BB + µ(1,2)AA

) − µ
(1,2)
AB (11)

where the sub- and superscripts 1 and 2 refer to the walls that confine the film. The coupling
enhancements g1,2 are given by g1,2 = (J1,2 − J )/J − 1 (coordination number factors again
omitted). The characteristics of the model imply a method of ‘preparation’ of the substrates for
‘tuning in’ the system to any desired location of the one-wall global phase diagram (h, t, h1, g)
or its extension for the film of finite thickness L. Each substrate is prepared with a coat of
given concentration of the bifunctional molecules AA, BB and AB that fixes the values of
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the surface chemical potentials µ(1)BB , µ(1)AA, µ(1)AB and µ(2)BB , µ(2)AA, µ(2)AB . Thus, for example,
the special transition in the semi-infinite system is obtained by giving the bulk mixture (at
temperature T ) equal amounts of the species AA and BB (h = 0) and adding species AB to
reduce the spin coupling J until the consolute point is reached (t = 0). The surface is prepared
with a monolayer also containing equal amounts of AA and BB (h1 = 0) and the filling of
the monolayer is completed by an amount of AB such that a value of J1 is achieved at which
g vanishes.

Consider the closed orbits inside the separatrix containing the uniform bulk states ±m0

in the phase portrait in figure 2. The inhomogeneous states associated with these orbits are
periodic unstable stationary states of the bulk spinodal decomposition [27]. The modification
of these states for the slab geometry can be described as a family of film states with interfacial-
like concentration profiles in the z-direction for the mixture model when conditions are close to
the special transition, when h = h1 = g = 0 but t < 0. These closed orbits are split in halves
by their intersections with the horizontal axis m′ = 0, the boundary condition for the walls
with h1 = g = 0. Each half orbit produces one concentration profile in this family, that in the
limit L → ∞ becomes the interface enriched in species AB between two bulk liquids rich
in species AA and BB respectively. For the confined system the film profile with decreasing
L is obtained from closed orbits located progressively farther away from the separatrix and
towards the centre of the portrait.

6. Scaling properties of the order parameter

The order parameter profilesm(z) obtained via the minimization of equation (1) always display
scaling properties as the range of validity of the Landau theory is the neighbourhood of a
classical critical point. Specifically, by construction of equation (1), a scaling property should
be exhibited by all profiles related to bulk, surface and confined states. Scaling of profiles is
to be found for different approaches to the critical point, e.g.: the approach from below Tc at
vanishing h, that for the vanishing of a (possibly non-uniform) field h at t = 0, or when the
width of a slab L diverges at t � 0 and h = 0. Explicit reference to these three examples is
given in [18]. We point out a general scaling property of the Landau phase portraits. Because
the profiles are obtained as specific sections of the phase portrait orbits, it is to be expected
that the entire set of phase portraits has a scaling property. That is, portraits that correspond
to different values of t and/or h and boundary conditions for different values of L could be
made identical through appropriate rescaling of parameters. That this is indeed the case can
be corroborated by examination of equations (4) and (2), as they can be rewritten as

d (m/M)

d (z/ξ)
=

[(m
M

)4
+

at

bM2

(m
M

)2
− h

bM3

m

M
+ 1

]1/2

(12)

where ξ ≡ √
A/2bM−1, M ≡ (CL/b)

1/4 and the quantities z/ξ , m/M , at/bM2 and h/bM3

are dimensionless. According to equation (12) the phase portrait in the scaled variables dµ/dx
and µ, µ ≡ m/M and x = z/ξ remains invariant. When h = 0 one has M ∝ (at/b)1/2, and
when t = 0, M ∝ (h/b)1/3.
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